Прокачиваем ораторское искусство, мышление и речь

Энергия представляет собой общую меру различных форм движения материи. Соответственно формам движения материи различают и виды энергии – механическую, электрическую, химическую и т.д. Всякая термодинамическая система в любом состоянии обладает некоторым запасом энергии, существование которой было доказано Р.Клаузиусом (1850) и получило название внутренней энергии.

Внутренняя энергия (U) – это энергия всех видов движения микрочастиц, составляющих систему, и энергия их взаимодействия между собой.

Внутренняя энергия складывается из энергии поступательного, вращательного и колебательного движения частиц, энергии межмолекулярного и внутримолекулярного, внутриатомного и внутриядерного взаимодействий и др.

Энергию внутримолекулярного взаимодействия, т.е. энергию взаимодействия атомов в молекуле, часто называют химической энергией . Изменение этой энергии имеет место при химических превращениях.

Для термодинамического анализа нет необходимости знать из каких форм движения материи складывается внутренняя энергия.

Запас внутренней энергии зависит только от состояния системы. Следовательно, внутреннюю энергию можно рассматривать как одну их характеристик этого состояния наравне с такими величинами, как, давление, температура.

Каждому состоянию системы соответствует строго определенное значение каждого из его свойств.

Если гомогенная система в начальном состоянии имеет объем V 1 , давление P 1 , температуру T 1 , внутреннюю энергию U 1 , удельную электропроводностьæ 1 и т.д., а в конечном состоянии эти свойства соответственно равны V 2 , P 2 , T 2 , U 2, æ 2 и т.д., то изменение каждого свойства при переходе системы из начального состояния в конечное будет одним и тем же, независимо от того, каким путем переходит система из одного состояния в другое: первым, вторым или третьим (рис. 1.4).

Рис. 1.4 Независимость свойств системы от пути ее перехода

из обычного состояния в другое

Т.е. (U 2 - U 1) I = (U 2 - U 1) II = (U 2 - U 1) III (1.4)

Где цифры I, II, III и т.д. указывают пути процесса. Следовательно, если система из начального состояния (1) в конечное (2) перейдет по одному пути, а из конечного в начале – по другому пути, т.е. совершится круговой процесс (цикл), то изменение каждого свойства системы будет равно нулю.

Таким образом, изменение функции состояния системы не зависит от пути процесса, а зависит лишь от начального и конечного состояний системы. Бесконечно малое изменение свойств системы обозначается обычно знаком дифференциала d. Например, dU– бесконечное малое изменение внутренней энергии и т.д.

Формы обмена энергией

В соответствии с различными формами движения материи и различными видами энергии существуют различные формы обмена энергией (передача энергии) – формы взаимодействия. В термодинамике рассматриваются две формы обмена энергии между системой и окружающей средой. Это работа и теплота.

Работа. Наиболее наглядной формой обмена энергией является механическая работа, соответствующая механической форме движения материи. Она производится при перемещении тела под действием механической силы. В соответствии с другими формами движения материи различают и другие виды работы: электрическую, химическую и т.д. Работа является формой передачи упорядоченного, организованного движения, так как при совершении работы частицы тела движутся организованно в одном направлении. Например, совершение работы при расширении газа. Молекулы газа, находящегося в цилиндре под поршнем, находятся в хаотическом, неупорядоченном движении. Когда же газ начнет перемещать поршень, то есть совершать механическую работу, на беспорядочное движение молекул газа будет накладываться организованное движение: все молекулы получают некоторое смещение в направлении движения поршня. Электрическая работа так же связана с организованным движением в определенном направлении заряженных частиц материи.

Поскольку, работа является мерой передаваемой энергии, количество ее измеряется в тех же единицах, что и энергия.

Теплота . Форму обмена энергией, соответствующую хаотическому движению микрочастиц, составляющих систему, называюттеплообменом , а количество энергии, переданное при теплообмене, называюттеплотой .

Теплообмен не связан с изменением положения тел, составляющих термодинамическую систему, и состоит в непосредственной передаче энергии молекулами одного тела молекулам другого при их контакте.

Представим себе изолированный сосуд (систему) разделенную на две части теплопроводной перегородкой ав (рис. 1.5). Допустим, что в обеих частях сосуда находится газ.

Рис. 1.5. К понятию о теплоте

В левой половине сосуда температура газа Т 1 , а в правой Т 2 . Если Т 1 > Т 2 , то средняя кинетическая энергия () молекул газа в левой части сосуда, будет больше средней кинетической энергии () в правой половине сосуда.

В результате непрерывных соударений молекул о перегородку в левой половине сосуда часть энергии их передается молекулам перегородки. Молекулы же газа, находящегося в правой половине сосуда, сталкиваясь с перегородкой, приобретут какую-то часть энергии от ее молекул.

В результате этих столкновений кинетическая энергия молекул в левой половине сосуда будет уменьшаться, а в правой – увеличиваться; температуры Т 1 и Т 2 будут выравниваться.

Поскольку теплота является метой энергии, ее количество измеряется в тех же единицах, что энергия. Таким образом, теплообмен и работа являются формами обмена энергией, а количество теплоты и количество работы - мерами передаваемой энергии. Различие между ними состоит в том, что теплота – это форма передачи микрофизического, неупорядоченного движения частиц (и, соответственно, энергии этого движения), а работа представляет собой форму передачи энергии упорядоченного, организованного движения материи.

Иногда говорят: теплота (или работа) подводится или отводится от системы, при этом следует понимать, что подводиться и отводится не теплота и работа, а энергия, поэтому следует не употреблять такого рода выражений как «запас теплоты» или «теплота содержится».

Являясь формами обмена энергией (формами взаимодействия) системы с окружающей средой, теплота и работа не могут быть связаны с каким-либо определенным состоянием системы, не могут являться ее свойствами, а, следовательно, и функциями ее состояния. Это означает, что если система проходит из начального состояния (1) в конечное (2) различными путями, то теплота и работа будут иметь разные значения для разных путей перехода (рис. 1.6)

Конечное количество теплоты и работы обозначают Q и A, а бесконечно малые значения соответственно через δQ и δA. Величины δQ и δA в отличие от dU не являются полным дифференциалом, т.к. Q и A не являются функциями состояния.

Когда же путь процесса буде предопределен, работа и теплота приобретут свойства функций состояния системы, т.е. их численные значения будут определяться только начальным и конечным состояниями системы.

Основной характеристикой внутреннего состояния физической системы является ее внутренняя энергия .

Внутренняя энергия (U ) включает в себя энергию хаотического (теплового) движения всех микрочастиц системы (молекул, атомов, ионов и т.п..) и энергию взаимодействия этих частиц, т.е. кинетическую, потенциальную и т.д., за исключением суммарной энергии покоя всех частиц.

Свойства внутренней энергии

1. В состоянии термодинамического равновесия частицы, входящие в состав макроскопических тел, движутся так, что их полная энергия все время с высокой точностью равна внутренней энергии тела.

2. Внутренняя энергия является функцией состояния физической системы.

3. Внутренняя энергия физической системы не зависит от пути перехода ее из одного состояния в другое, а определяется только значениями внутренней энергии в начальном и конечном состояниях: D U = U 2 - U 1 .

4. Внутренняя энергия характеризуется свойством аддитивности, т.е. она равна суммарной внутренней энергии тел, входящих в систему.

Замечание: частицы газа, кроме поступательных степеней свободы, имеют еще и внутренние. Например, если частицами газа являются молекулы, то, кроме электронного движения, возможно вращение молекул, а также колебания атомов, входящих в состав молекул.

Поступательное движение частиц газа подчиняется классическим законам, а их внутренние движения носят квантовый характер. Лишь при определенных условиях внутренние степени свободы можно считать классическими.

Для расчета внутренней энергии идеального газа используют закон равнораспределения энергии по классическим степеням свободы. В случае идеального газа учитывается только кинетическая энергия поступательного движения частиц. Если частицами газа являются отдельные атомы, то каждый имеет три поступательные степени свободы.

Следовательно, каждый атом обладает средней кинетической энергией:

< e k > =3 kT /2.

Если газ состоит из N атомов, то его внутренняя энергия

Если же возбуждаются еще и колебательные степени свободы молекул, то вклад их во внутреннюю энергию

.

(1.27)

В формуле (1.27) учтено, что каждое колебательное движение молекул характеризуется средней кинетической и средней потенциальной энергиями, которые равны между собой. Поэтому согласно закону равнораспределения энергии по степеням свободы на одну колебательную степень свободы приходится в среднем энергия kT.

Таким образом, если молекула двухатомная, то полное число степеней свободы ее i =6. Три из них поступательные (i пост =3), две вращательные (i вр =2) и одна колебательная (i кол =1). При температурах, когда еще “заморожены” колебательные степени свободы, внутренняя энергия двухатомных молекул идеального газа .

Если же колебательные степени свободы “разморожены”, то внутренняя энергия двухатомных молекул идеального газа U = U пост + U вр + U кол =.

Таким образом, внутренняя энергия одноатомного идеального газа

U = N < e k > = (3/2)NkT ,

(1.28)

где < e k > = .

Число молей газа n =N/ N a = m / M, то

Мы знаем, что внутреннюю энергию тела можно изменить двумя способами - путем совершения работы и путем теплообмена. При осуществлении первого из этих способов внутренняя энергия тела изменяется на величину совершенной работы А, а при осуществлении второго из них - на величину, равную количеству переданной теплоты Q.

Обозначим начальную внутреннюю энергию тела через U 1 , а конечную (после того, как ее изменили) - через U 2 . Тогда изменение внутренней энергии тела будет равно разности U 2 -U 1 . Изменение любой физической величины в физике принято обозначать греческой буквой А (дельта) Поэтому мы можем записать:

ΔU - изменение внутренней энергии
U = U 2 – U 1

Изменение внутренней энергии может выражаться как положительной, так и отрицательной величиной:
1) если внутренняя энергия тела увеличивается, то U 2 > U 1 и, следовательно, ΔU > 0;
2) если внутренняя энергия тела уменьшается, то U 2 < U 1 и, следовательно, ΔU < 0.

В зависимости от того, каким путем (путем совершения над телом работы или путем теплообмена) изменялась внутренняя энергия тела, ее изменение можно рассчитывать двумя способами:

ΔU = A - при совершении работы (33.1)
ΔU = Q - при теплообмене (33.2)

Применяя уравнение (33.1), следует помнить, что в его правой части фигурирует работа внешних сил, действующих на тело. Работа самого тела A тела отличается от нее знаком:

A тела = –A

Количество теплоты Q также может быть как положительным, так и отрицательным:
1) если внутренняя энергия тела увеличивается в процессе теплообмена, то Q>О (тело получает количество теплоты);
2) если внутренняя энергия тела уменьшается в процессе теплообмена, то Q<0 (тело отдает количество теплоты).

В общем случае внутренняя энергия тела (или системы тел) может изменяться сразу двумя способами - и путем совершения работы, и путем теплообмена. Тогда для расчета изменения внутренней энергии применяют уравнение

ΔU = A + Q (33.3)

Согласно этому уравнению, изменение внутренней энергии системы равно сумме работы внешних сил и количества теплоты, полученного системой.

1. Как обозначаются внутренняя энергия тела и изменение внутренней энергии тела? 2. В каком случае изменение внутренней энергии тела положительно и в каком отрицательно? 3. Какой знак имеет: а) количество теплоты, полученное телом; б) количество теплоты, отданное телом? Почему? 4. Напишите формулу, по которой рассчитывается изменение внутренней энергии тела при теплообмене. 5. Напишите формулу, по которой рассчитывается изменение внутренней энергии тела при совершении над ним работы. 6. По какой формуле рассчитывается изменение внутренней энергии в общем случае?

Рассмотрение того или иного физического явления или класса явлений удобно производить при помощи моделей разной степени приближения. Например, при описании поведения газа используется физическая модель - идеальный газ.

Любая модель имеет границы применимости, при выходе за которые требуется ее уточнение либо применение более сложных вариантов. Здесь мы рассмотрим простой случай описания внутренней энергии физической системы исходя из наиболее существенных свойств газов в определенных пределах.

Идеальный газ

Эта физическая модель для удобства описания некоторых основополагающих процессов следующим образом упрощает реальный газ:

  • Пренебрегает размерами молекул газа. Это означает, что существуют явления, для адекватного описания которых данный параметр несущественен.
  • Пренебрегает межмолекулярными взаимодействиями, то есть принимает, что в интересующих ее процессах они проявляются в ничтожно малые промежутки времени и не оказывают влияния на состояние системы. При этом взаимодействия носят характер абсолютно упругого удара, при котором не происходит энергопотерь на деформации.
  • Пренебрегает взаимодействием молекул со стенками резервуара.
  • Принимает, что система «газ - резервуар» характеризуется термодинамическим равновесием.

Такая модель подходит для описания реальных газов, если давления и температуры относительно невелики.

Энергетическое состояние физической системы

Всякая макроскопическая физическая система (тело, газ или жидкость в сосуде) обладает, помимо собственной кинетической и потенциальной, еще одним видом энергии - внутренней. Эту величину получают, суммируя энергии всех составляющих физическую систему подсистем - молекул.

Каждая молекула в составе газа тоже имеет свою потенциальную и кинетическую энергию. Последняя обусловлена непрерывным хаотическим тепловым движением молекул. Различные взаимодействия между ними (электрическое притяжение, отталкивание) определяются потенциальной энергией.

Нужно помнить, что если энергетическое состояние каких-либо частей физической системы не оказывает никакого влияния на макроскопическое состояние системы, то оно не принимается во внимание. Например, при обычных условиях ядерная энергия не проявляет себя в изменениях состояния физического объекта, поэтому ее учитывать не нужно. Но при больших температурах и давлениях это уже необходимо делать.

Таким образом, внутренняя энергия тела отражает характер движения и взаимодействия его частиц. Это означает, что данный термин является синонимом часто употребляемого понятия «тепловая энергия».

Одноатомные газы, то есть такие, атомы которых не объединены в молекулы, существуют в природе - это инертные газы. Такие газы, как кислород, азот или водород, могут существовать в подобном состоянии только в условиях, когда извне затрачивается энергия на постоянное возобновление этого состояния, поскольку их атомы химически активны и стремятся соединиться в молекулу.

Рассмотрим энергетическое состояние одноатомного идеального газа, помещенного в сосуд некоторого объема. Это простейший случай. Мы помним, что электромагнитное взаимодействие атомов между собой и со стенками сосуда, а, следовательно, и их потенциальная энергия пренебрежимо малы. Так что внутренняя энергия газа включает в себя только сумму кинетических энергий его атомов.

Ее можно вычислить, умножив среднюю кинетическую энергию атомов в газе на их количество. Средняя энергия равна E = 3/2 х R / N A х T, где R - универсальная газовая постоянная, N A - число Авогадро, Т - абсолютная температура газа. Число атомов подсчитываем, умножая количество вещества на постоянную Авогадро. Внутренняя энергия одноатомного газа будет равна U = N A х m / M х 3/2 х R/N A х T = 3/2 х m / M х RT. Здесь m - масса и М - молярная масса газа.

Предположим, что химический состав газа и его масса всегда остаются одинаковыми. В таком случае, как видно из полученной нами формулы, внутренняя энергия зависит только от температуры газа. Для реального газа нужно будет учитывать, помимо температуры, изменение объема, поскольку оно влияет на потенциальную энергию атомов.

Молекулярные газы

В приведенной выше формуле число 3 характеризует количество степеней свободы движения одноатомной частицы - оно определяется числом координат в пространстве: x, y, z. Для состояния одноатомного газа вообще безразлично, вращаются ли его атомы.

Молекулы же сферически асимметричны, поэтому при определении энергетического состояния молекулярных газов нужно учитывать кинетическую энергию их вращения. Двухатомные молекулы, кроме перечисленных степеней свободы, связанных с поступательным движением, имеют еще две, связанные с вращением вокруг двух взаимно перпендикулярных осей; у многоатомных молекул таких независимых осей вращения три. Следовательно, частицы двухатомных газов характеризуются количеством степеней свободы f=5, у многоатомных же молекул f=6.

Вследствие хаотичности, присущей тепловому движению, все направления и вращательного, и поступательного перемещения совершенно равновероятны. Средняя кинетическая энергия, вносимая каждым видом движения, одинакова. Поэтому мы можем подставить величину f в формулу, что позволяет рассчитать внутреннюю энергию идеального газа любого молекулярного состава: U = f / 2 х m / M х RT.

Конечно, мы видим из формулы, что эта величина зависит от количества вещества, то есть от того, сколько и какого газа мы взяли, а также от структуры молекул этого газа. Однако, поскольку мы условились не менять массу и химический состав, то учитывать нам нужно только температуру.

Теперь рассмотрим, как величина U связана с другими характеристиками газа - объемом, а также давлением.

Внутренняя энергия и термодинамическое состояние

Температура, как известно, является одним из состояния системы (в данном случае газа). В идеальном газе она связана с давлением и объемом соотношением PV = m / M х RT (так называемое уравнение Клапейрона - Менделеева). Температура же определяет тепловую энергию. Так что последнюю можно выразить через набор других параметров состояния. Она безразлична к предыдущему состоянию, а также к способу его изменения.

Посмотрим, как изменяется внутренняя энергия, когда система переходит из одного термодинамического состояния в другое. Ее изменение при любом подобном переходе определяется разностью начального и конечного значений. Если система через некоторое промежуточное состояние возвратилась к первоначальному, то эта разность будет равна нулю.

Допустим, мы нагрели газ в резервуаре (то есть подвели к нему дополнительную энергию). Термодинамическое состояние газа изменилось: возросли его температура и давление. Такой процесс идет без изменения объема. Внутренняя энергия нашего газа увеличилась. После этого наш газ отдал подведенную энергию, остыв до исходного состояния. Такой фактор, как, например, скорость этих процессов, не будет иметь никакого значения. Результирующее изменение внутренней энергии газа при любой скорости нагревания и охлаждения равняется нулю.

Важным моментом является то, что одному и тому же значению тепловой энергии может соответствовать не одно, а несколько термодинамических состояний.

Характер изменения тепловой энергии

Для того чтобы изменить энергию, требуется совершить работу. Работа может совершаться самим газом или внешней силой.

В первом случае затрата энергии на совершение работы производится за счет внутренней энергии газа. Например, мы имели в резервуаре с поршнем сжатый газ. Если отпустить поршень, расширяющийся газ станет поднимать его, совершая работу (чтобы она была полезной, пусть поршень поднимает какой-нибудь груз). Внутренняя энергия газа уменьшится на величину, затраченную на работу против силы тяжести и сил трения: U 2 = U 1 - A. В этом случае работа газа положительна, поскольку направление силы, приложенной к поршню, совпадает с направлением движения поршня.

Начнем опускать поршень, совершая работу против силы давления газа и опять-таки против сил трения. Тем самым мы сообщим газу некоторое количество энергии. Здесь уже считается положительной работа внешних сил.

Помимо механической работы, существует и такой способ отнять у газа или сообщить ему энергию, как Мы уже встречались с ним в примере с нагреванием газа. Энергия, переданная газу в ходе процессов теплообмена, называется количеством теплоты. Теплообмен бывает трех видов: теплопроводность, конвекция и лучистый перенос. Рассмотрим их немного подробнее.

Теплопроводность

Способность вещества к теплообмену, осуществляемому его частицами путем передачи друг другу кинетической энергии в ходе взаимных столкновений при тепловом движении - это теплопроводность. Если некоторая область вещества нагрета, то есть ей сообщено определенное количество теплоты, внутренняя энергия через некоторое время посредством столкновений атомов или молекул окажется распределена между всеми частицами в среднем однородно.

Понятно, что теплопроводность сильно зависит от частоты столкновений, а та, в свою очередь - от среднего расстояния между частицами. Поэтому газ, особенно идеальный, характеризуется весьма низкой теплопроводностью, и это свойство часто используют для теплоизоляции.

Из реальных газов теплопроводность выше у тех, чьи молекулы наиболее легкие и при этом многоатомные. Этому условию в наибольшей степени отвечает молекулярный водород, в наименьшей - радон, как самый тяжелый одноатомный газ. Чем более разрежен газ, тем худшим проводником тепла он является.

В целом передача энергии за счет теплопроводности для идеального газа - очень малоэффективный процесс.

Конвекция

Гораздо эффективнее для газа такой как конвекция, при которой внутренняя энергия распределяется посредством потока вещества, циркулирующего в поле тяготения. горячего газа формируется за счет архимедовой силы, поскольку он менее плотный вследствие Смещающийся вверх горячий газ постоянно замещается более холодным - устанавливается циркуляция газовых потоков. Поэтому для того, чтобы обеспечить эффективный, то есть наиболее быстрый, нагрев через конвекцию, необходимо подогревать резервуар с газом снизу - как и чайник с водой.

Если же необходимо отнять у газа какое-то количество теплоты, то холодильник эффективнее размещать вверху, так как отдавший энергию холодильнику газ будет устремляться вниз под действием тяготения.

Примером конвекции в газе является обогрев воздуха в помещениях при помощи отопительных систем (их размещают в комнате как можно ниже) или охлаждение с применением кондиционера, а в природных условиях явление тепловой конвекции служит причиной перемещения воздушных масс и влияет на погоду и климат.

При отсутствии силы тяжести (при невесомости в космическом корабле) конвекция, то есть циркуляция воздушных потоков, не устанавливается. Так что нет смысла зажигать на борту космического корабля газовые горелки или спички: горячие продукты сгорания не будут отводиться вверх, а кислород - подводиться к источнику огня, и пламя затухнет.

Лучистый перенос

Вещество может нагреваться и под действием теплового излучения, когда атомы и молекулы приобретают энергию, поглощая электромагнитные кванты - фотоны. При низких частотах фотонов этот процесс не очень эффективен. Вспомним, что, когда мы открываем микроволновую печку, то обнаруживаем там горячие продукты, но не горячий воздух. С повышением частоты излучения эффект лучевого нагрева повышается, например, в верхней атмосфере Земли сильно разреженный газ интенсивно нагревается и ионизируется солнечным ультрафиолетом.

Различные газы в разной степени поглощают тепловое излучение. Так, вода, метан, углекислый газ поглощают его довольно сильно. На этом свойстве основано явление парникового эффекта.

Первое начало термодинамики

Вообще говоря, изменение внутренней энергии через нагревание газа (теплообмен) также сводится к совершению работы либо молекул газа, либо над ними посредством внешней силы (что обозначается так же, но с обратным знаком). Какая же работа совершается при таком способе перехода из одного состояния в другое? Ответить на этот вопрос нам поможет закон сохранения энергии, точнее, его конкретизация применительно к поведению термодинамических систем - первое начало термодинамики.

Закон, или универсальный принцип сохранения энергии, в наиболее обобщенной форме гласит, что энергия не рождается из ничего и не пропадает бесследно, а лишь переходит из одной формы в другую. В отношении термодинамической системы это надо понимать так, что работа, совершаемая системой, выражается через разность между сообщаемым системе (идеальному газу) количеством теплоты и изменением ее внутренней энергии. Иначе говоря, на это изменение и на работу системы затрачивается сообщенное газу количество теплоты.

В виде формул это записывается гораздо проще: dA = dQ - dU, и соответственно, dQ = dU + dA.

Мы уже знаем, что эти величины не зависят от способа, которым совершается переход между состояниями. От способа зависит скорость этого перехода и, как следствие, эффективность.

Что касается второго начала термодинамики, то оно задает направление изменения: теплота не может быть переведена от более холодного (а значит, менее энергичного) газа к более горячему без дополнительных затрат энергии извне. Второе начало также указывает, что часть энергии, расходуемой системой на совершение работы, неизбежно диссипирует, теряется (не исчезает, а переходит в непригодную для использования форму).

Термодинамические процессы

Переходы между энергетическими состояниями идеального газа, могут иметь разный характер изменения тех или иных его параметров. Внутренняя энергия в процессах переходов разного типа также будет вести себя по разному. Рассмотрим кратко несколько видов таких процессов.

  • Изохорный процесс протекает без изменения объема, следовательно, газ никакой работы не совершает. Внутренняя энергия газа изменяется как функция разности конечной и начальной температур.
  • Изобарный процесс происходит при неизменном давлении. Газ совершает работу, а его тепловая энергия рассчитывается так же, как и в предыдущем случае.
  • Изотермический процесс характеризуется постоянной температурой, а, значит, и тепловая энергия не меняется. Количество теплоты, получаемое газом, целиком уходит на совершение работы.
  • Адиабатический, или адиабатный процесс протекает в газе без теплопередачи, в теплоизолированном резервуаре. Работа совершается только за счет затрат тепловой энергии: dA = - dU. При адиабатическом сжатии тепловая энергия увеличивается, при расширении - соответственно уменьшается.

Различные изопроцессы лежат в основе функционирования тепловых машин. Так, изохорный процесс имеет место в бензиновом двигателе при крайних положениях поршня в цилиндре, а второй и третий такты двигателя - это примеры адиабатического процесса. При получении сжиженных газов адиабатическое расширение играет важную роль - благодаря ему становится возможна конденсация газа. Изопроцессы в газах, при исследовании которых не обойтись без понятия о внутренней энергии идеального газа, характерны для многих явлений природы и находят применение в самых разных отраслях техники.

Cтраница 1


Внутренняя энергия вещества является энергией составляющих вещество молекул. В обычных термодинамических процессах изменения претерпевают лишь кинетическая и потенциальная части внутренней энергии. Первая зависит от скоростей движения молекул (поступательного, вращательного, колебательного), вторая обусловливается наличием сил взаимодействия (притяжения или отталкивания) между молекулами и расстоянием между ними.  

Внутренняя энергия вещества представляет собой его полную энергию, которая складывается из кинетической и потенциальной энергий, составляющих вещество атомов и молекул, а также элементарных частиц, образующих атомы и молекулы.  

Внутренняя энергия вещества зависит только от его физического состояния и не зависит от способа или пути, которыми данное вещество приведено в данное состояние. Это следует непосредственно из закона сохранения энергии. В самом деле, обозначим цифрами 1 и 2 два произвольных состояния системы. Пусть V есть затраченная на этот переход энергия. Заставим теперь систему совершить первый переход в прямом - направлении, второй - в обратном. При первом переходе будет затрачена энергия [ /, при втором отдана U, следовательно, внешние тела, окружающие систему, получают энергию U - V, причем никаких изменений в самой системе не происходит. U положительна или отрицательна, безразлично; во всяком случае наше рассуждение привело нас к противоречию с законом сохранения энергии.  

Внутренняя энергия вещества зависит при данных условиях не только от химической природы его, но и от агрегатного состояния, а для кристаллов - и от модификации их.  

Внутренняя энергия вещества представляет собой его полную энергию, которая суммируется из кинетической и потенциальной энергий, составляющих вещество атомов и молекул, а также элементарных частиц, образующих атомы и молекулы. Она включает: 1) энергию поступательного, вращательного и колебательного движения всех частиц; 2) потенциальную энергию взаимодействия (притяжения и отталкивания) между ними; 3) внутримолекулярную химическую энергию; 4) внутриатомную энергию; 5) внутриядерную энергию; 6) гравитационную энергию; 7) лучистую энергию, заполняющую пространство, занятое телом, и обеспечивающую внутри тела тепловое равновесие между отдельными его участками. Внутренняя энергия не включает потенциальную энергию, обусловленную положением системы в пространство, и кинетическую энергию движения системы как целого.  

Внутренняя энергия вещества превращается в энергию излучения.  

Внутренней энергией вещества называется сумма кинетических энергий всех молекул и потенциальных энергий взаимодействия между молекулами. Чем больше величина внутренней энергии, тем больше тепла содержится в теле и тем выше его температура.  

Увеличение внутренней энергии вещества при испарении без изменения температуры происходит в основном благодаря тому, что при переходе в пар среднее расстояние между молекулами увеличивается. При этом возрастает их потенциальная энергия, так как для того, чтобы раздвинуть молекулы на большие расстояния, нужно затратить работу на преодоление сил притяжения молекул друг к другу.  

Под внутренней энергией вещества понимают сумму кинетической энергии движения молекул, потенциальной энергии их взаимодействия, а также энергии колебания атомов внутри молекул. При определении состояния тела величина внутренней энергии строго определенна, поэтому ее также относят к параметрам состояния тела.  

При этом внутренняя энергия вещества превращается в энергию излучения (энергию фотонов или электромагнитных волн), которая, попадая на тела, способные ее поглощать, снова превращается во внутреннюю энергию. Например, при полете космического корабля в межпланетном пространстве его поверхность поглощает излучение Солнца.  

Так как внутренняя энергия веществ является функцией объема, давления и температуры, то, очевидно, и тепловые эффекты реакций зависят от условий, при которых эти реакции протекают. Практически наибольшее значение имеет влияние температуры на тепловые эффекты процессов.  

Показать, что внутренняя энергия вещества с уравнением состояния в форме pTf (V) не зависит от объема.  

Показать, что внутренняя энергия вещества с уравнением состояния в форме р / (F) Т не зависит от объема.  

Вследствие изменения при нагреве внутренней энергии вещества практически все физические свойства последнего в большей или меньшей степени зависят от температуры, но для ее измерения выбираются по возможности те из них, которые однозначно меняются с изменением температуры, не подвержены влиянию других факторов и сравнительно легко поддаются измерению. Этим требованиям наиболее полно соответствуют такие свойства рабочих веществ, как объемное расширение, изменение давления в замкнутом объеме, изменение электрического сопротивления, возникновение термоэлектродвижущей силы и интенсивность излучения, положенные в основу устройства приборов для измерения температуры.  

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Прокачиваем ораторское искусство, мышление и речь